登入论坛

浏览完整版本 : 一个微分几何的基本概念 总算搞清楚了



此帖已删
07-01-05, 09:31
Given a function f: M → R, define a special element of Tp*M. Call it ωf. Define ωf by the following:
ωf = (∂f/∂xβ) dxβ. In other words, the coefficients ωβ = ∂f/∂xβ.
Now, let's see what happens if we act with ωf on a vector vp in TpM:
ωf[ vα∂/∂xα ] = (∂f/∂xβ) vβ = vp(f).
ωf[ v ] is the directional derivative of f in the direction of v. It exactly gives us the same result we would get if we acted on f with v as a directional derivative.
We give ωf a new name: ωf = df = (∂f/∂xβ) dxβ.
Now, df[ v ] = v(f) is the directional derivative of f in the v-direction.
Now, we can see that our notation for "df" connects with our notation for "dxβ ". We have used boldface to distinguish them thus far, but soon that will not be necessary. As a special case, let f be the coordinate function f = xβ. Then,
df = d(xβ) = (∂xβ/∂xα) dxα, where "dxα " is still our dual vector notation.
Now, ∂xβ/∂xα = δαβ is just our friendly Kronecker Delta again, which is fairly easy to see, since our coordinates are independent of each other. Therefore, we have the relation
d(xβ) = dxβ. Our notation is consistent.
So, in a fairly unorthodox manner, the notation has lead us to a map d from functions into forms. d is known as the exterior derivative (http://www.everything2.com/index.pl?node=exterior%20derivative).
df=(∂f/∂xβ) dxβ 原来是一个微分形式 dx 不能看作传统意义下的微小增量
这个符号让我迷惑了几乎一年了,天, 转变观念实在太费劲了。

此帖已删
07-01-05, 09:44
You might ask, "What about our notion of dx as a small change in x?" Well, one day, you're going to have to throw that picture out of the window, because the notation "dx" does not actually mean a small change in x. "dx" isn't even really a number. It's a linear map from vectors to numbers. It can act on small vectors to produce small numbers, but it isn't a small number in itself; it's not even an element of R. It's an element of Tp*M.

与遇到过相同困惑的同学同鉴!

水蔷薇
07-01-05, 22:08
越来越佩服你,厉害!~

此帖已删
07-01-06, 00:57
不用佩服
这都是基本的东西

leier11
07-01-06, 20:57
这个式子记得在流体热力学中常用到。

举个例子,流体在导热管道中流动,要求出流体在管道中温度分布情况 T(x),其中x为流动位移方向,那么在设计的 Kontrol-Volumen中有 :T(x+dx)=T(x)+(∂T/∂x) dx

此帖已删
07-01-07, 02:30
恩 流体力学以前学过点皮毛
但听说也是可以用微分几何语言表述的
以方便曲线坐标下公式的建立
不过你举的例子应该可以归入普通微分的概念